Day 25: CaptionCraft: Build an Image Captioning App with BLIP and Gradio




Duration:
1-Day Workshop
Series: From Code to Cognition
Level: Intermediate (Python & ML basics)

Why This Matters on Day 25

As we hit Day 25 of the From Code to Cognition series, we shift gears from language-centric architectures to multimodal intelligence. Vision-language models like BLIP aren’t just impressive—they represent a leap in making machines see and describe the world the way humans do. CaptionCraft embodies that shift: from token sequences to image semantics.

Today’s build goes beyond theory. You’ll leave with a working app, deeper intuition for BLIP’s pipeline, and an interface that’s workshop-ready and community-shareable.

Overview

In this hands-on workshop, you'll build CaptionCraft—an app that transforms images into meaningful captions using the BLIP vision-language model. You’ll gain practical experience with pretrained AI models, understand image-text alignment, and deploy your tool using Gradio for easy accessibility.

What You’ll Learn

  • How BLIP interprets images and generates descriptive text
  • Best practices for model loading, UI integration, and error handling
  • How to enhance your captioning app with multilingual support, batch processing, and style filtering

 Part 1: Introduction to BLIP

BLIP (Bootstrapped Language Image Pretraining) is a state-of-the-art model developed by Salesforce that bridges the gap between vision and language. Pretrained on massive image-text datasets, it powers tasks like:

  • Image captioning
  • Visual question answering
  • Image-text retrieval

For CaptionCraft, we use BLIP’s image captioning ability to turn uploaded visuals into readable, relevant descriptions.

 Part 2: Implementation Breakdown

Step 1: Setup Your Environment

Install required libraries:

pip install torch torchvision transformers gradio pillow

Project structure:

# Project Structure: CaptionCraft
CaptionCraft/
  ├── app/
  │   ├── captioning.py
  │   └── interface.py
  ├── assets/ # Sample images
  ├── run.py # Launcher
  ├── requirements.txt
  └── README.md

Step 2: Build a Robust Caption Generator

File: app/captioning.py

// Vision-language captioning using BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
import logging

logging.basicConfig(level=logging.INFO)

class CaptionGenerator:
  def __init__(self):
    self.device = "cuda" if torch.cuda.is_available() else "cpu"
    logging.info(f"Using device: {self.device}")

    self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)

  def generate_caption(self, image: Image.Image) -> str:
    try:
      inputs = self.processor(images=image, return_tensors="pt").to(self.device)
      output = self.model.generate(**inputs)
      caption = self.processor.decode(output[0], skip_special_tokens=True)
      return caption
    except Exception as e:
      return f"Error generating caption: {str(e)}"

# Optional singleton loader
captioner = CaptionGenerator()

Step 3: Create the Gradio UI

File: app/interface.py

// Gradio interface for BLIP-powered captioning
import gradio as gr
from app.captioning import captioner

def build_interface():
  def safe_generate_caption(image):
    return captioner.generate_caption(image)

  demo = gr.Interface(
    fn=safe_generate_caption,
    inputs=gr.Image(type="pil", label="Upload an Image"),
    outputs=gr.Textbox(label="Generated Caption"),
    title="CaptionCraft",
    description="BLIP-powered image captioning tool"
  )
  return demo

if __name__ == "__main__":
  build_interface().launch()

Step 4: Launch the App

File: run.py

// Run entry point for CaptionCraft
if __name__ == "__main__":
  app = build_interface()
  app.launch()

 Extension Ideas

For learners finishing early or working on stretch goals:

  • Multilingual Captions: Integrate translation APIs for Hindi, Telugu, etc.
  • Caption Styles: Add options like poetic, humorous, factual toggles.
  • Batch Captioning: Accept multiple image uploads or folders.
  • Downloadable Captions: Allow users to export results.
  • Spinner Feedback: Add loaders during generation for better UX.
  • Attention Maps: Visualize BLIP’s focus regions (advanced).

 README Tips

Include the following in your README.md:

  • Project purpose and motivation
  • Setup instructions and dependency list
  • Screenshot or demo GIF
  • Example usage or sample output
  • License and contributor credits
  • Learning outcomes for workshop participants

Comments

Popular posts from this blog

Day 1: AI Introduction Series: What is Artificial Intelligence and Why It Matters

Day 28 : Code to Cognition: AI Agents ≠ AI Automations: Why the Distinction Matters